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Conditions in the bow shock originating in hypersonic viscous gas flow past
& blunt body at low Reynolds numbers, which are needed to detegmine thepin-
fluence of the velocity of displacement of the boundary layer on the ex-
ternal flow, are here considered in a more general fgrmulation than in [1]
Conditions on the shock are found by the method of internal and externai
expansions, from which the conditions customarily used on a shock,considered
as a mathematical surface,and the conditions obtained in [1] result as par-
ticular cases. These conditions are compared, and the reasons impelling the
author to consider the conditions on the shock obtained in [1] are clarified (¥),

1. Just as in [1], let us consider the plane or axisymmetric problem of
uniform hypersonic perfect viscous gas flow around a contour (Fig.l). Here
A0A'1s the contour of the streamlined body; the domain 4 is the boundary lay-
er; the domain 2 is & shock considered as & domain with large gradients of
the gas parameters.

It is assumed that an arc of the contour {from the point 0 to the limiting
characteristics of the inviscid flow) is an analytic curve; the gas is per-
fect, 1.e., its equation of atate is paRpl, where p is the pressure, p the
density, T the absolute temperature, R the gas constant; the specific heat
at constant pressure o, and constant volume g, are constants; the internal
energy is emg, T ; the viscosity coefficients u and A are functions only of
T; the Prandt] number ¢ is constant. The gas flow 1s described by the Navier-
Stokes eguations and its flow 1s laminar.

We denote the unperturbed flow parameters with the subscript ~ thus: N=is
the unperturbed flow Mach number, 7, is its velocity. If u,\=O (omconst),then
the thickness of the domain 2 approaches zero and the domain 2 approximates
some surface (B0’ (the surface of the shock in the inviscid problem) without
limit.

Let us introduce an 8,n curvilinear coordinate system (Pig.1). Here 8 and
n are measured along the arc BC and along its normal. Then if the linear quan-

#) The author committed an oversight in [1]. The method of characterstics
in the form proposed in [1] is incorrect. In this connection, the author’s
atatement on the uniqueness of the solution of the problem in the supersonic
part of the flow around a blunt body,with the boundary conditions on the bow
wave proposed in [1],1s false. I. N. Mursinov mentioned these facts to the
author.
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titices are referred to the radius of curvature ¢ of the body at the point 0,

the gas velocity to U,, the pressure to @mu%
the density to p, the temperature to U@fcp_:
the entropy and ehthalpy of the gas to ¢, and
U8 ,respectively, the viscosity coefficients to
the value of u at 7 = U;jcp“, , then the con-
tinuity,momentum, energy edquations and the
equation of state of the gas 1ln the chosen co-
ordinate system,are written in the form presen-
ted in [2 and 1]. Let us consider [1] to be
known. The parameter,characterizing the effect
of the viscous force,ls

[ m(Ugte,™) :|'/z Q. = const*
&= PaoUooa (B= Roo-l/’)

Here Reo 18 the Reynolds number of the unper-
turbed flow.

Pig.1

2. The solution of the Navier-Stokes equations in domain (3) will be
represented by asymptotic expansions [2] of the form

f=Fo(s, n)+ eFy(s,n) + ... (2.1)

where J 18 understood to stand for the quantities p,p,u,v,T; here u,v are the
veloclity components in the direction of increasing & and n, respectively;

r, O,n; are parameters of the solution of the inviscid problem; the terms

F, (8,n)characterize the influence of the "velocity of displacement” of the
boundary layer.

To £ind the terms F, (8,n),1it is necessary to obtain conditions on the
shock (n=0) for them. the’method of "internal and external® expansions was
utilized to solve this problem in [1]. Expansions of the fgrm 2.1) were taken
for u,v,P,p,T in domains 1 and 3 in Fig.l.; these are the external” solution.
In contrast to [1]), let us assume that although the shock "thiclmess",the do-
main 2, is a quantity O(e¢®), the domain 2 with respect to 0BC’ 1s however
shifted by a quantity O(c). If XDX’ denotes some line lying within the domain
2, its equation may be written as

n=¢e@ (s,&) = €@y (s) + ... 2.2)
We take an expansion of the type
f=folss N)+efy (s, NV .. ., N=[n—ep(s,8)] &7 (2.3)

within the shock (domain 2 in Pig.l). .

In [1]) we had N = ne?2. This is the "internal” expansion.

Let us assume that Fy(e,n), F(8,n),... in domains 1,3 Pig.lare represented
by asymptotic power series in n as n-0, then from (2.1) for small n we obtain

f=[Feo (s + Fa®n+...04+elF(&)+Fu@E@nrn+...14+... 4

After passage from n to ¥ and regrouping terms of the serles (2.4),we have

= [Foo ()] + 2 [Fra(s) + Fea (s) o ()] + - . . (2.9)

The expansion (2.5) shgould represent f for large ¥ and small n (the condi-
tion of ‘matching of the "internal’ and "external” expansions.

( It): follows from (2.5) that the "internal” expansion should have the form
2.3) and

fo— Foo* (s), f1— Fio* (s} + Fort (s) Qo (s), N>+ oo (2.6)
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fo—= Fo~(s),  f1—> Fro~ (84 For™ (5) Qo (3), N—>—o0 c(:gng)

3. The subsequent procedure is no different from that in [1], The
Navier-Stokes equations are transformed to the ¥ and s variables,taking into

account that
of of | _ A L9 (  _de
D5 In " 95 |n 8Q6N<q)=ds)

(3.1)

wherein the expansions (2.3) are substituted; systems of equations for the
Jo(s,¥) and s, (8,¥) are obtained by equat coefficients of identical powers
of ¢. If we use notation {f} = (Ay_ 4 oo— (A¥— —ocr then exactly as in [1],
by taking account of (2.6}, we obtain from these systems of equations

‘(povo} 01 {uo} Oy {Povo + Po} = O) { 2 + Y — 1 Po } = 0, T= %
’ _ ’ T D1 P
{Pov1+ P10 — Qo'uopo} = 0, {u1 + vopo’} =0 {T —1 ( po P:ﬂ 91) + 20 (v1 — uo@e’)} =0

{2povers + p1oo? + p1} = 0, Qo' = d@o / ds (3.2)
Here according to (2.6)

= . oF,
fo=Foo ()= (Fo)pe g f1=Fio(s)+ For (s) Qo (s) = (F1+ yngqlo)
n=+0
Here f=p, p, u, v {f} = (Npeavo — (Du——g+ The relations (3.1) are the cus-
tomary conditions on a strong discontinuity in the inviscid problem.The rela-
tions (3.2) differ from those in [1] by the additional terms containing %o
and by the fact that (fi)y.,,e = (F)p—.¢ 8are replaced

ar
(Wyssoe = (P14 G2 @0

Exactly as in [1],Equations (3.2) agree with those conditions which are
obtained 1if 1t is assumed that the shock 1s a mathematical surface nmego(s).

)112:1:0

4. The flow in domain 1 of Fig.l 1s not known to accuracy O§c)1n ad-
vance, The conditions for perturbation,damping as x —— = (see [1]) remain
arbitrary, u, ,v, 88 ¥ =~ — o (n= — 0}, and p;,p, are connected by means of
the relations

b1 P1 .
= ' o’ Pr=—-(v15in 0 + uy cos 0) (4.1)

The relations (3.1), (3.2) and (4.1) on the shock have been obtalned under
very general assumptions. To determine p,,p, ,u:,?; uniquely from them it is
necessary to know u, ,b, for n= — O and g, (the parameters of the inviscid
problem are considered known). Apparently these relations do not permit a
unique determination of the quantities with subscript 1 in the transonic do-
main [1], hence,it is necessary to make additional assumptions. Here are the
following fundamental possibilitles:

Version 1. We assume that u,=v, = O for n= — 0; from (4.1) it follows

p1=p1=T1=0 for n=—20

Version 2. We asaume that go=0
Version 3. We assume that at n= — 0O

ur == Fl@o, (P'o,---), V1 = F”(@O! @’01"')
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where F, ,F, are some functions of their arguments.

The first version 1s the most attractive. Here, as a consequence of
Uy =D, =p, mp, =T, w0 for n= — 0, we obtain that there are no O(ec) perturbations
ahead of the shock, the conditions on the shock agree with the conditions
obtained by the perturbation method from the condltions on the shock in the
inviscid problem. And the whole problem of determining u,,v, ,P,p,,I, agrees
with the problem of determining the inviscid flow perturbations around a
blunt body,whose surface has been changed slightly, if the method of formal
expansion 1n powers of ¢ is used.

However, the example presented in the Vaglio-Laurin paper [3] (a profile
in transonic flow) and his investigation of the problem of flow past a blunt
body by the integral relations method,show that linear systems, obtained by
formal expansiona in powers of a smali parameter, to determine perturbations
in the case of transonic problems,may possess solutions whose derivatives
become infinite on some lines in ‘he transonic domain.

In order to obtain a smoother solution, the boundary conditions may be
weakened. For example, if the Tricomi problem is solved for the Tricomil equa-
tion, but we specify the desired function on the second characteristic, then
a solution of the problem is possible, but in a class of functions having
discontinuities of the first derivatives on the parabolic line. To eliminate
this discontinuity, 1t is required that the boundary condition be eliminated
from the second characteristic.

Being guided by similar considerations, the author conasidered the second
version in [1] where one condition less is obtained on the shock than in the
first version, and there are O(e) perturbations ahead of the shock. The ques-
tion of the existence and uniqueness of the transonic problem,with conditions
of the second version on the shock, remained open. An indirect argument in
favor of the second version in [1] was the correctness of the computations
by the metnod of characteristiecs in the supersonic part of the flow,

However, an investigation for a wedge (at some distance from the vertex),
where the solution had successfully been obtained in analytic¢ forim, showed
that the conditions on the shock in the second version are not sufficient for
uniqueness of the solution in the supersonic part of the flow. It hence fol-
lows that the method of characteristics, in the form proposed in [1], 1s not
correct. )

In this counection, it may be assumed that it is necessary to utilize the
conditions on the shock in the second version in the transonic domain, and
the conditione of the first version after the limiting characteristics. But
such a construction, although possible, seems artificilal to the author, and
therefore, he does not use the conditions of the second version. The correct
solution of the problem will evidently be the following.

Conditions on the shock in the first version should be utilized, If a sin-
gular line occurs in the transonic domain, it will be necessary to introduce
a supplementary intermediate expansion in ¢ in its neighborhood. It is also
necessary to elucidate how valid is the assumption u,= u,= O (p;= p,= 7, = 0)
at n= — 0. The assumption of the third version, in whioh there are O(c¢) per-
turbations ahead of the shock, is more general.

In conclusion, the author would like to turn attention to the following.
Nonlinear inviscid gas, equations are often utilized to find the gas flow per-
turbations because of the velocity of displacement, but the body contour is
altered correspondingly. Evidently linear equations for the perturbations
should be utilized since, as the examples in [3] show, the results of solving
nonlinear and linear systems for the perturbations may differ substantially
fur the transonic problems.
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